10,474 research outputs found

    Effects of oxidized low density lipoprotein, lipid mediators and statins on vascular cell interactions

    Get PDF
    The integrin heterodimer CD11b/CD18 (alpha M beta 2, Mac-1, CR3) expressed on monocytes or polymorphonuclear leukocytes (PMN) is a receptor for iC3b, fibrinogen, heparin, and for intercellular adhesion molecule (ICAM)-1 on endothelium, crucially contributing to vascular cell interactions in inflammation and atherosclerosis. In this report, we summarize our findings on the effects of lipid mediators and lipid-lowering drugs. Exposure of endothelial cells to oxidized low density lipoprotein (oxLDL) induces upregulation of ICAM-1 and increases adhesion of monocytic cells expressing Mac-1. Inhibition experiments show that monocytes use distinct ligands, i.e. ICAM-1 and heparan sulfate proteoglycans for adhesion to oxLDL-treated endothelium. An albumin-transferable oxLDL activity is inhibited by the antioxidant pyrrolidine dithiocarbamate (PDTC), while 8-epi-prostaglandin F2 alpha (8-epi-PGF2 alpha) or lysophosphatidylcholine had no effect, implicating yet unidentified radicals. Sequential adhesive! and signaling events lead to the firm adhesion of rolling PMN on activated and adherent platelets, which may occupy areas of endothelial denudation. Shear resistant arrest of PMN on thrombin-stimulated platelets in flow conditions requires distinct regions of Mac-1, involving its interactions with fibrinogen bound to platelet alpha llb beta 3, and with other platelet ligands. Both arrest and adhesion strengthening under flow are stimulated by platelet-activating factor and leukotriene B4, but not by the chemokine receptor CXCR2. We tested whether Mac-1-dependent monocyte adhesiveness is affected by inhibitors of hydroxy-methylglutaryl-Coenzyme A reductase (statins) which improve morbidity and survival of patients with coronary heart disease. As compared to controls, adhesion of isolated monocytes to endothelium ex vivo was increased in patients with hypercholesterolemia. Treatment with statins decreased total and low density lipoprotein (LDL) cholesterol plasma levels, surface expression of Mac-1, and resulted in a dramatic reduction of Mac,mediated monocyte adhesion to endothelium. The inhibition of monocyte adhesion was reversed by mevalonate but not LDL in vitro,indicating that isoprenoid precursors are crucial for adhesiveness of Mac-1. Such effects may crucially contribute to the clinical benefit of statins, independent of cholesterol-lowering, and may represent a paradigm for novel, anti-inflammatory mechanisms of action by this class of drugs

    Metadata Maker

    Get PDF
    Metadata Maker was developed to improve the productivity of cataloging and metadata workflows, allowing anyone to create metadata in various formats, regardless of their familiarity and experience with metadata standards.Ope

    Preoperative automated fibre quantification predicts postoperative seizure outcome in temporal lobe epilepsy

    Get PDF
    Approximately one in every two patients with pharmacoresistant temporal lobe epilepsy will not be rendered completely seizure-free after temporal lobe surgery. The reasons for this are unknown and are likely to be multifactorial. Quantitative volumetric magnetic resonance imaging techniques have provided limited insight into the causes of persistent postoperative seizures in patients with temporal lobe epilepsy. The relationship between postoperative outcome and preoperative pathology of white matter tracts, which constitute crucial components of epileptogenic networks, is unknown. We investigated regional tissue characteristics of preoperative temporal lobe white matter tracts known to be important in the generation and propagation of temporal lobe seizures in temporal lobe epilepsy, using diffusion tensor imaging and automated fibre quantification. We studied 43 patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis and 44 healthy controls. Patients underwent preoperative imaging, amygdalohippocampectomy and postoperative assessment using the International League Against Epilepsy seizure outcome scale. From preoperative imaging, the fimbria-fornix, parahippocampal white matter bundle and uncinate fasciculus were reconstructed, and scalar diffusion metrics were calculated along the length of each tract. Altogether, 51.2% of patients were rendered completely seizure-free and 48.8% continued to experience postoperative seizure symptoms. Relative to controls, both patient groups exhibited strong and significant diffusion abnormalities along the length of the uncinate bilaterally, the ipsilateral parahippocampal white matter bundle, and the ipsilateral fimbria-fornix in regions located within the medial temporal lobe. However, only patients with persistent postoperative seizures showed evidence of significant pathology of tract sections located in the ipsilateral dorsal fornix and in the contralateral parahippocampal white matter bundle. Using receiver operating characteristic curves, diffusion characteristics of these regions could classify individual patients according to outcome with 84% sensitivity and 89% specificity. Pathological changes in the dorsal fornix were beyond the margins of resection, and contralateral parahippocampal changes may suggest a bitemporal disorder in some patients. Furthermore, diffusion characteristics of the ipsilateral uncinate could classify patients from controls with a sensitivity of 98%; importantly, by co-registering the preoperative fibre maps to postoperative surgical lacuna maps, we observed that the extent of uncinate resection was significantly greater in patients who were rendered seizure-free, suggesting that a smaller resection of the uncinate may represent insufficient disconnection of an anterior temporal epileptogenic network. These results may have the potential to be developed into imaging prognostic markers of postoperative outcome and provide new insights for why some patients with temporal lobe epilepsy continue to experience postoperative seizures

    Genetic variation in herbivore resistance within a strawberry crop wild relative (Fragaria vesca L.)

    Get PDF
    To decrease the dependency on chemical pesticides, the resistance of cultivated strawberry to pests needs to be increased. While genetic resources within domesticated varieties are limited, wild genotypes are predicted to show high heritable variation in useful resistance traits. We collected 86 wild accessions of Fragaria vesca L. from central Sweden and screened this germplasm for antibiosis (pest survival and performance) and antixenosis (pest preference) traits active against the strawberry leaf beetle (Galerucella tenella L.). First, extensive common garden experiments were used to study antibiosis traits in the sampled plant genotypes. Heritable genetic variation among plant genotypes was found for several antibiosis traits. Second, controlled cafeteria experiments were used to test for plant genetic variation in antixenosis traits. The leaf beetles avoided egg laying on plant genotypes possessing high antibiosis. This indicates a high degree of concordance between antibiosis and antixenosis and that the beetles' egg-laying behavior optimizes the fitness of their offspring. The existence of high genetic variation in key resistance traits suggests that wild woodland strawberry contains untapped resources that are sought to reduce pesticide dependence in cultivated strawberry. Given that only a very small portion of the species' distribution area was sampled, even higher variation may be expected at the continental scale. As a whole, the genetic resources identified in this study serve to strengthen the position of woodland strawberry as a key crop wild relative

    A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite

    Full text link
    The study of radiation effects in solids is important for the development of 'radiation-resistant' materials for fission-reactor applications'. The effects of heavy-ion irradiation in the isostructural orthosilicates zircon (ZrSiO4), hafnon (HfSiO4) and thorite (ThSiO4) are particularly important because these minerals are under active investigation for use as a waste form for plutonium-239 resulting from the dismantling of nuclear weapons(2-4). During ion irradiation, localized 'cascades' of displaced atoms can form as a result of ballistic collisions in the target material, and the temperature inside these regions may for a short time exceed the bulk melting temperature. Whether these cascades do indeed generate a localized liquid state(5-8) has, however, remained unclear. Here we investigate the irradiation-induced decomposition of zircon and hafnon, and find evidence for formation of a liquidlike state in the displacement cascades. Our results explain the frequent occurrence of ZrO2 in natural amorphous zircong(9-12) Moreover, we conclude that zircon-based nuclear waste forms should be maintained within strict temperature Limits, to avoid potentially detrimental irradiation-induced amorphization or phase decomposition of the zircon.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62853/1/395056a0.pd

    Cortical Factor Feedback Model for Cellular Locomotion and Cytofission

    Get PDF
    Eukaryotic cells can move spontaneously without being guided by external cues. For such spontaneous movements, a variety of different modes have been observed, including the amoeboid-like locomotion with protrusion of multiple pseudopods, the keratocyte-like locomotion with a widely spread lamellipodium, cell division with two daughter cells crawling in opposite directions, and fragmentations of a cell to multiple pieces. Mutagenesis studies have revealed that cells exhibit these modes depending on which genes are deficient, suggesting that seemingly different modes are the manifestation of a common mechanism to regulate cell motion. In this paper, we propose a hypothesis that the positive feedback mechanism working through the inhomogeneous distribution of regulatory proteins underlies this variety of cell locomotion and cytofission. In this hypothesis, a set of regulatory proteins, which we call cortical factors, suppress actin polymerization. These suppressing factors are diluted at the extending front and accumulated at the retracting rear of cell, which establishes a cellular polarity and enhances the cell motility, leading to the further accumulation of cortical factors at the rear. Stochastic simulation of cell movement shows that the positive feedback mechanism of cortical factors stabilizes or destabilizes modes of movement and determines the cell migration pattern. The model predicts that the pattern is selected by changing the rate of formation of the actin-filament network or the threshold to initiate the network formation

    Chronic bilateral heel pain in a child with Sever disease: case report and review of literature

    Get PDF
    We are presenting a case report of a 10-year-old male with a 1 year history of bilateral heel pain. Sever disease is self limiting condition of calcaneal apophysis. It is the most common cause of heel pain in the growing child. There is no documented case of this condition in this region. This case highlights the clinical features of this self limiting disorder as seen in this patient and reviews the current literature
    • …
    corecore